Thématiques principales

mardi 28 août 2018

Les Streams avec Java 8

De la plomberie?

Je vous avais dit que nous reviendrions sur les Streams définis dans l'API Java 8. J'avais évoqué cette API en novembre dernier lorsque nous avions fait un tour d'horizon de Java 8 [1]. Je sais ça fait un peu loin et pas mal d'eau a coulé sous les ponts, cependant je pense que même si cet article arrive un peu tard (même si nous avons quand même vu pas mal d'autres choses depuis à la place) cela ne fera pas de mal de regarder un peu plus dans le détail cette API qui est incontournable.

Tout d'abord il faut dire que le Stream est un pattern de conception, nous ne l’avions pas traité dans le blog, il serait intéressant de le traité mais il s'agit essentiellement d'un paradigme de modélisation de la gestion de flux qu'une manière d’implémenter ces dits flux. Dans ce paradigme, tout comme dans l'API [2], bien sur nous y retrouverons des traits comme la capacité de construire des pipelines de traitement.



En fait du coup, un stream, c'est quoi? un tuyau! ou plusieurs mis bout a bout entre lesquels divers filtres, transformations et traitement sont appliqués. Les éléments ainsi introduit dans le stream va alors subir les différents traitements successivement (ce n'est pas aussi simple car le stream peut avoir a traiter plusieurs éléments en même temps, voir tous les éléments) et ce tant qu'il y a des éléments. Grace a cette propriété (le tant que) les streams sont capables de traiter des listes ou des ensembles d’éléments de taille non connu (pour ne pas dire infini qui n'aurait pas beaucoup de sens...) initialement.

Dans Java 8, les streams vont donc être un complément au pattern Iterator qui se cache derrière nos structures foreach. D'une part en permettant des traitements potentiellement infini mais aussi de façon a simplifier les boucles et les traitements. En effet le constat est que les manipulations sur les listes dans les boucles sont généralement des traitements produisant des résultats sans liens avec un besoin quelconque de modifier la liste elle-même (chose généralement à bannir sans risque d'effets de bords désagréables, d'ou l'utilisation de liste immutable).

Initialisation d'un stream

Ainsi, grâce aux streams, le traitement sur un ensemble d’éléments (liste, ensemble, infini ou non) peut être infini si le stream est construit comme tel, et cela ne pose aucun problème. Par exemple on peut créer des streams finis voir vide:

1
2
3
4
5
6
7
8
9
Stream emptyStream = Stream.empty();

Collection<String> collection = Arrays.asList("a", "b", "c");
Stream<String> streamOFromArray = collection.stream();

String[] arr = new String[]{"a", "b", "c"};
Stream<String> streamOFromArray2 = Arrays.stream(arr);

IntStream streamOfChars = "abc".chars();

ou des streams infinis (vous verrons comment les limiter), en compréhension

1
2
3
Stream<String> genStream = Stream.generate(() -> "1");
IntStream s=IntStream.range(1,10);
Stream<String> iterateStream = Stream.iterate("thomas",(x) -> x.toUpperCase());

Au passage on constate que les Streams s'appuient aussi beaucoup sur les nouvelles API fonctionnelles apportées aussi par Java 8 avec les lambdas expression (sujet traité dans [1]).

On peut aussi construire des streams statiquement avec des builders comme on le ferait avec un StringBuilder (pour ceux qui connaissent)

1
Stream<String> phrase=Stream.<String>builder().add("Ceci ").add("est ").add("une ").add("phrase.").build();

Ou a partir de chaîne de caractères pour en faciliter le parsing ou la dissection avec des RegEx ( StreamSupport)

Filtration

Maintenant que l'on a des streams sous la main, le tout est d'en faire quelque chose. Comme nous en avions parlé, différents traitements sont possibles et chacun d'eux nous permettra de construire alors un nouveau stream. Il importe donc de bien comprendre l'emploi de ces differentes fonctions car comme nous l'avons évoqué, ces traitements vont se cascader, impliquant que l'ordre d’exécution à une importance significative.

Par exemple :

Considérons un stream produisant des entiers dont on ne gardera que les éléments pair. On voudra ne conserver que les 20 premiers éléments du calcul. Pour répondre à ce problème, il nous faudra employer la fonction filter et la fonction limit.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
System.out.println("Stream1");
Stream<Integer> stream = Stream.iterate(0,(x)-> x+1 );
stream.limit(10).filter((x) -> (x % 2) == 0).forEach(System.out::println);

System.out.println("Stream2");
Stream<Integer> stream2 = Stream.iterate(0,(x)-> x+1 );
stream2.filter((x) -> (x % 2) == 0).limit(10).forEach(System.out::println);

System.out.println("Stream3");
IntStream stream3=new Random().ints(0,100);
stream3.limit(10).filter((x) -> (x % 2) == 0).sorted().forEach(System.out::println);

Avec cet exemple simple, on voit bien que l'ordre d’exécution des fonctions a une importance. Le résultat est affiché via la fonction foreach grâce a laquelle il est possible de passer en paramètre une fonction qui sera appliqué a tous les éléments produit par le stream.

Manipulation sur les streams

A la place et comme suit, il est possible d'utiliser la fonction collect qui renvoi un élément de l'API collection et aggregant l'ensemble des éléments produits par le stream (une fois celui-ci vidé et trié avec la fonction sorted).

1
2
3
System.out.println("Stream4");
Stream<Integer> stream4=new Random().ints(0,100).boxed();// on fait un boxed pour traduire de IntStream
Set<Integer> set=stream4.filter((x) -> (x % 2) == 0).limit(10).sorted().collect(Collectors.toSet());

Voyons maintenant les fonctions un peu plus complexe que sont map et reduce. Ces deux fonctions sont un peu le cœur des streams car elles vont nous permettre d'appliquer des opérations de traitements, transformations et calculs.

Prenons par exemple le besoin de calculer un ensemble de point suivant une droite tel que y=a*x+b avec a=4 et b=3. Avec l'API Stream, cela nous donne le code suivant:

1
2
Stream<Double> stream= DoubleStream.iterate(0.00, x -> x + 1 ).boxed();
Set<Double> s=stream.map(x -> 4*(x+Math.random())+3).limit(200000).collect(Collectors.toSet());

De la même manière, il va être possible de calculer la moyenne des différents points avec la fonction reduce :

1
2
Integer value=IntStream.range(1,10).reduce((x,y)->x+y).getAsInt();
System.out.println(value); //45

Avec ces deux exemples simples, on comprend assez facilement le role des fonctions map/reduce.

La première va construire un stream constitué des résultats de la fonction passée en paramètre (un peu comme foreach sans être une fonction finale pour le stream).

A noter que des variantes de la fonction map existent : des fonctions comme mapToObject, boxed, mapToDouble,etc...permettent de faciliter la conversion d'un Stream d'un type d'objet en un Stream contenant un autre type d'objets.

La seconde, la fonction reduce, a l'inverse va appliquer de façon globale la fonction passée en paramètre afin de restituer un resultat unitaire (ici une moyenne).

Un peu plus loin

Afin afin de permettre des traitements spécifiques, il est possible d'employer des Streams spécifiques dédiés a la manipulation des entiers, des doubles, des longs etc... Ces Streams permettent alors de récupérer pas exemple des statistiques sur les données du stream comme avec l’objet IntSummaryStatistics

1
2
3
4
5
6
Stream<Integer> stream4=new Random().ints(0,100).boxed();
IntSummaryStatistics stats=stream4.mapToInt(x -> x).summaryStatistics();
System.out.println("Plus grand" + stats.getMax());
System.out.println("Plus petit" + stats.getMin());
System.out.println("La somme" + stats.getSum());
System.out.println("La moyenne" + stats.getAverage());

Voila nous sommes a la fin de la présentation des Streams. Dernier point a évoquer est la possibilité d'utiliser la fonction parallel qui s'appuie sur l'API Java 7 fork/join [3] et fourni la possibilité de paralléliser les traitements sur les éléments du stream afin d'en améliorer les performances d’exécution. Il sera peut être utile dans un article futur de nous intéresser a cette fameuse API fork/join.


1
2
Stream<Double> stream2= DoubleStream.iterate(0.00, x -> x + 1 ).boxed();
Set<Double> s2=stream2.parallel().map(x -> 4*(x+Math.random())+3).limit(200000).collect(Collectors.toSet());

Voila, nous avons fait le tour de l'API Stream de Java 8. Elle utilise largement les lambda expressions et implémente une nouvelle manière de penser le traitement des données tout en fournissant des outils simples de manipulation (map/reduce) sans omettre le besoin de performance (parallel). Pour ceux voulant d'autres exemples d'utilisation je vous invite a consulter [4], [5], [6] et [7].

Pour avoir le code source (en vrac) c'est ici [8].

Référence:

  • [1] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/evolution-java-8.html
  • [2] https://docs.oracle.com/javase/8/docs/api/java/util/stream/package-summary.html
  • [3] http://blog.paumard.org/2011/07/05/java-7-fork-join/
  • [4] https://winterbe.com/posts/2014/07/31/java8-stream-tutorial-examples/
  • [5] https://blog.axopen.com/2014/05/java-8-api-stream-introduction-collections/
  • [6] https://www.tutorialspoint.com/java8/java8_streams.htm
  • [7] https://www.baeldung.com/java-8-streams
  • [8] https://github.com/collonville-tom/tc-un-est-tout-et-tout-est-un/tree/master/Java8-Streams/src

samedi 18 août 2018

JEE : CDI partie 2 : les patterns

Nous revoilà avec CDI, nous avions vu les principes de base de l'injection, son utilisation dans une factory et ensuite comment l'utiliser avec des servlets et des JSP. Aujourd'hui nous terminerons le sujet en traitant des implémentations de CDI des patterns observateur, décorateur (ou façade) et InvocationHandler.

Les patterns

Nous avons jusque la vu les fonctionnalités les plus importantes du framework CDI mais ca serait passer a coté d'autres fonctions bien pratiques que de s’arrêter ici. En effet comme énoncé plus haut, CDI fourni des versions adaptées à l'injection de certains designs patterns.

Observateur

Voyons par exemple le pattern observateur [7] Je ne reviens pas sur ce pattern déjà décrit dans le blog mais il s'agit d'un modèle de communication réactif entre deux composants se notifiant par le biais d'un système d’événements.

Dans le framework CDI, ce pattern se traduit par l'utilisation de la classe générique Event<T> prenant en type l'information à transmettre (le vrai événement en fait) et l'annotation @Observes se chargeant de taguer le paramètre de type T d'une méthode devant recevoir l’événement, l'appel à celle ci se faisant alors automatiquement. Voyons cela dans le concret avec un exemple.

Considérons simplement que deux beans doivent communiquer entre eux (on va s'appuyer sur l'article précédent sur CDI [14]). On va considérer que CDIModelShortScope veuille prévenir CDIModel qu'une requête utilisateur vient d’être faite (en gros que l'objet vient de se creer et d'etre detruit)

On va donc modifier ce premier de façon a qu'il permette l’émission de messages en utilisant Event et en utilisant la méthode fire

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
@Named
@RequestScoped
public class CDIModelShortScope {

 @Inject
 private Event<String> event;
 
 @PostConstruct
 public void build()
 {
  System.out.println("Construction de CDIModelShortScope");
  event.fire("Une nouvelle conexion");
 }
 
 @PreDestroy
 public void destroy()
 {
  System.out.println("Destruction de CDIModelShortScope");
  event.fire("Fin de vie CDIModelShortScope");
 }
 
}
On ajoute dans la classe CDIModel, le moyen d’écouter les messages: 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
@Named("model")
@ApplicationScoped
public class CDIModel {

 private String dataModel="les données du model";

 public void updateOnConnect(@Observes String event)
 {
  System.out.println(event);
 }
 
....
 
}

Le comportement resultant produisant bien dans les log : 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
[#|2018-08-14T21:27:18.493+0200|INFO|glassfish 5.0||_ThreadID=27;_ThreadName=Thread-8;_TimeMillis=1534238838493;_LevelValue=800;|
  Construction de CDIModel|#]

[#|2018-08-14T21:27:18.502+0200|INFO|glassfish 5.0||_ThreadID=27;_ThreadName=Thread-8;_TimeMillis=1534238838502;_LevelValue=800;|
  Construction de CDIModelShortScope|#]

[#|2018-08-14T21:27:18.503+0200|INFO|glassfish 5.0||_ThreadID=27;_ThreadName=Thread-8;_TimeMillis=1534238838503;_LevelValue=800;|
  Une nouvelle conexion|#]

[#|2018-08-14T21:27:18.505+0200|INFO|glassfish 5.0||_ThreadID=27;_ThreadName=Thread-8;_TimeMillis=1534238838505;_LevelValue=800;|
  Destruction de CDIModelShortScope|#]

[#|2018-08-14T21:27:18.505+0200|INFO|glassfish 5.0||_ThreadID=27;_ThreadName=Thread-8;_TimeMillis=1534238838505;_LevelValue=800;|
  Fin de vie CDIModelShortScope|#]

[#|2018-08-14T21:27:47.287+0200|INFO|glassfish 5.0||_ThreadID=132;_ThreadName=Thread-8;_TimeMillis=1534238867287;_LevelValue=800;|
  Destruction de CDIModel|#]

Plutôt efficace et pas cher... non? Passons au décorateur.

Le Decorateur [6] 

Je vous avais parler de pattern avec un "s" et bien CDI fourni aussi des implémentations pour quelques autres patterns, entre autre les patterns façade (ou décorateur) et invocationhandler. Ces deux patterns sont assez proche en fonctionnement, la différence étant dans la nature de la dépendance que l'on crée entre le bean décoré et l'objet décorateur ou objet intercepteur.

Regardons cela par un exemple:

Considérons un bean MyObject contenant une donnée membre "nom" de type String caracterisant l'identité de l'objet. Ce nom est recuperable via une méthode getName().

Nous souhaiterions alors une fonctionnalité nous permettant de façon transparente renvoyer le hash du nom a la place. (Par soucis de simplicité pour l'exemple on utilisera les annotations @Named et @ApplicationContext).

On va dans un premier temps proposer une solution avec un décorateur. Pour cela, il nous faut construire une classe ayant le même profil de classe que le bean décoré. On va définir une API commune sous la forme d'une interface.

Enfin définissons le décorateur: Celui se défini sous la forme d'une classe abstraite implémentant la même interface que le bean en utilisant les annotations @Delegate et @Decorator (et @Priority qui permet de donner un ordre de prise en charge des beans si plusieurs décorateurs sont a l'oeuvre sinon cela est équivalent a définir le décorateur dans le beans.xml).

Ainsi le bean prendra la forme suivante:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
@Named("myObject")
@ApplicationScoped
public class MyObject implements INamed {

 private String name="defaultName";

 public String getName() {
  return name;
 }
}
et le décorateur: 

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
@Priority(value = 0)
@Decorator
public abstract class MyObjectDecorator implements INamed{

 @Inject
 @Delegate
 private INamed myObject;
 
 @Override
 public String getName() {
  return String.valueOf(myObject.getName().hashCode());
 }

}

La JSP affichant et utilisant la méthode getName nous renverra alors:
1
myObject Name: -437142420

L'InvocationHandler [8]

Apres avoir traité la question du décorateur regardons la solution alternative qu'est l'utilisation de l'intercepteur (basé sur le pattern invocation handler que nous avons traité dans [8]).

Ce pattern est un pattern permettant de positionner un objet entre le client faisant l'appel d'une méthode et la méthode elle même. En comparaison avec le décorateur, on pourrait se dire, "ok bon ca fait la meme chose" mais l'invocation handler a plutôt pour idée de modifier le comportement de la méthode d'une classe pour toutes ses instances. Un décorateur n'a pas cet objectif : il ne va pas se charger de toutes les instances de la classe, il peut éventuellement ne décorer que des objets spécifiques selon le besoin.

On pourrait donc en quelques sortes considérer que le décorateur a pour rôle de modifier le comportement en y ajoutant des éléments fonctionnel selon le cas alors que l'invocation handler aura un impact plus global et avec une orientation plus technique.

Voyons maintenant comment utiliser l'invocation Handler avec CDI.

Pour l'exemple imaginons que nous souhaitons compter le nombre de caractère du nom de l’objet que nous utilisions précédemment et l'affecter a une donnée membre dédiée.

Pour cela il nous faut tout d'abord construire une annotation maison permettant de tisser un lien entre le bean et notre futur intercepteur. Cette annotation devra alors porter l'annotation @InterceptorBinding. Appelons la CompteurAnnot:



1
2
3
4
@InterceptorBinding
@Target({ElementType.TYPE, ElementType.METHOD}) 
@Retention(RetentionPolicy.RUNTIME) 
public @interface CompteurAnnot {}
On place ensuite cette annotation sur la méthode du bean qu'il s'agit d'intercepter


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
@Named("myObject")
@ApplicationScoped
public class MyObject implements INamed {

 private String name="defaultName";
 
 private String nameSize;

 @CompteurAnnot
 public String getName() {
  return name;
 }
 
 public String getNameSize() {
  return nameSize;
 }

 public void setNameSize(String nameSize) {
  this.nameSize = nameSize;
 }
}
On va enfin créer notre intercepteur avec une nouvelle classe Compteur avec les Annotations @Interceptor et @AroundInvoke. Le premier est placé sur la classe et le deuxième sur la méthode qui devra être appeler a la place de celle du bean et réaliser le comptage. On y ajoutera notre annotation, afin que CDI sache faire le lien entre l'intercepteur et le bean associé.


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
@Priority(value = 0)
@CompteurAnnot
@Interceptor
public class Compteur {

 @Inject
 private MyObject myObject;
 
 @AroundInvoke
 public Object invoq(InvocationContext context) throws Exception {
  String result = (String) context.proceed();
  System.out.println("YES: on a invoqué "+result);
  myObject.setNameSize(String.valueOf((result.length())));
  return result;
 }

}
Du coup en ajoutant l'appel a cette méthode getSizeName dans la JSP, celle ci nous donne maintenant la taille de la chaîne, l’intercepteur a donc bien fait son travail.


1
myObject Name: -437142420, 10

Conclusion

Nous voila au bout de cet article sur CDI. Nous n'avons pas absolument tout traité mais globalement on en a fait un tour d'horizon plutôt large techniquement nous permettant de suffisamment comprendre l’intérêt de profiter des fonctionnalités de CDI et surtout de voir son role pivot dans les applications à base JEE. Ainsi a l'image de Spring, CDI est maintenant un incontournable.

Références

[1] https://un-est-tout-et-tout-est-un.blogspot.com/2018/05/iod-linjection-de-dependances.html
[2] https://docs.oracle.com/javaee/6/tutorial/doc/giwhl.html
[3] http://openwebbeans.apache.org/
[4] http://weld.cdi-spec.org/
[5] https://javaee.github.io/glassfish/
[6] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/design-pattern-decorateur.html
[7] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/design-pattern-observateur.html
[8] https://un-est-tout-et-tout-est-un.blogspot.com/2018/04/invocationhandler.html
[9] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/design-pattern-factory.html
[10] http://www.cdi-spec.org/news/2017/05/15/CDI_2_is_released/
[11] https://readlearncode.com/java-ee/introduction-to-cdi-producer-methods/
[12] https://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html
[13] https://rmannibucau.developpez.com/tutoriels/cdi/introduction-cdi
[14] http://un-est-tout-et-tout-est-un.blogspot.com/2018/08/jee-cdi-partie-1-linjection.html

mercredi 15 août 2018

JEE : CDI partie 1 : l'injection

Apres un mois de juillet avec de l'IA, nous revoilà avec du Java, en particulier JEE. Cet article intervient dans la ligné de l'article [1] ou nous avions présenté les principes de l'injection de dépendance mais étions passé au dessus des implémentations possibles. Nous traiterons donc en toute logique d'une des implémentations majeur existante : CDI (l'autre étant Spring mais nous le traiterons dans un article dédié).

Introduction

CDI, ou Context and Dependency Injection, est donc un framework d'injection de dépendances évoluant dans l'environnement JEE. Comme d'habitude avec les technologie JEE, CDI a été élaboré après que le framework concurrent ici Spring qui en a posé les bases. Ainsi il s'appuie sur la formalisation apportée par les  JSR 299 et 346 [2], [3] a partir des années 2009 et fut décliné selon differentes versions telles que:
  • v1 en 2009 avec JEE 6 
  • v1.1 en 2013
  • v1.2 en 2014
  • v2 en 2017 dans JEE 8 [10]

Standalone mode

La plupart des concepts de base de CDI ont été élaboré dans ses premières versions et en fait sa dernière évolution n'apporte surtout que la possibilité de faire évoluer le framework en dehors d'un conteneur d'application en permettant d'instancier le framework directement dans un classique main comme suit:

1
2
3
 public static void main(String[] args) {
  CDI<Object> container = new Weld().initialize();
 }

en utilisant la version 3 de Weld [4] et en le declarant dans le pom du projet:

1
2
3
4
5
<dependency>
 <groupId>org.jboss.weld.se</groupId>
 <artifactId>weld-se-core</artifactId>
 <version>3.0.5.Final</version>
</dependency>

Pourtant cette utilisation en standalone n'est pas forcement préconisé et est seulement à utiliser que lorsque l'on souhaite construire son propre conteneur d'application Java (nous reviendrons sur cette possibilité quand nous aborderons OSGI, bientot)

Standard mode

En l’état, le mieux que l'on puisse faire, c'est se référer à la spécification JEE en utilisant la dépendance suivante:

1
2
3
4
5
6
<dependency>
 <groupId>javax</groupId>
 <artifactId>javaee-api</artifactId>
 <version>8.0</version>
 <scope>provided</scope>
</dependency>

Ainsi l'application que l'on produira (sous la forme d'un War ou d'un EAR si l'on utilise des EJB) s'appuiera sur les implémentations java fournies par le container d'applications.

Pour traiter de CDI, n'importe quel container supportant une version 1.2 de CDI fera l'affaire (idéalement appuyez vous sur Glassfish [5] qui reste l’implémentation JEE de référence)

L'injection

Retournons a CDI et ce que le framework permet de faire. CDI comme son nom l’évoque traite de l'injection de dépendances. Globalement ceci passe par l'utilisation de beans et de l'annotation @Inject.

1
2
@Inject
private ServletConf servletConf;

On ne peut pas plus simple pour un framework! ou du moins pour son utilisation en première approche. Cependant ce n'est pas tout, car CDI fourni de nombreuses autres fonctionnalités techniques pour la conception logicielle en s'appuyant sur différents Design Pattern tel que:
  • Le Decorateur [6]
  • L'Observateur [7]
  • L'InvocationHandler [8]
  • La Factory [9]
Ou entre autre la possibilité de spécifier au moteur d'injection d'utiliser des alternatives (avec l'annotation du même nom @Alternative) des spécialisations ou de faire de la résolution dynamique à l'aide de la classe Instance<T>

Nous nous limiterons aux patterns, les annotations cités ci-dessus étant assez immédiates a utiliser.

La factory [11]

Apres cet exemple simple, considérons par exemple que nous ne souhaitons plus simplement injecter un bean quelconque mais injecter un bean de notre propre composition. Comment faire? Et bien la va intervenir une annotation @Produces que l'on va associer a une ou plusieurs méthodes qui seront désignées comme les constructeurs des beans à injecter.

L'interet de l'approche est double, d'une part elle permet d'associer la création d'un bean a injecter avec un comportement et d'autre part de permettre a des objets qui ne sont pas des beans [12] a être quand même injectable :

1
2
3
4
5
@Produces 
public CDIModel createCDIModel()
{
 return new CDIModel();
}

Alors est ce que ça marche? Et bien non!! Arf pourquoi ?? C’était si simple, ça aurait du! Et bien simplement que le moteur CDI va avoir un conflit d'injection, il se base sur les signature de type pour trouver quelque chose a injecter et la, il en trouve deux : la classe CDIModel elle même et la méthode createCDIModel qui retourne un CDIModel.

Pour s'en sortir, il nous faut un moyen de discrimination. Pour cela, on va utiliser l'annotation @Qualifier qui va nous permettre de construire des annotations utilisables a la fois sur les éléments sources et sur les éléments cibles, la ou l'on souhaite réaliser l'injection.

On va donc créer une annotation maison pour discriminer les beans construis avec la factory.

1
2
3
4
5
6
@Qualifier
@Retention(RetentionPolicy.RUNTIME)
@Target({ElementType.TYPE, ElementType.METHOD, ElementType.FIELD, ElementType.PARAMETER })
public @interface FromFactory {

}

On l'ajoute sur la signature de la méthode et sur l’élément ou l'injecter et la oh miracle ça fonctionne (ici par exemple on injecte avec les deux approches dans une jsp)

1
2
@Produces @FromFactory
public CDIModel createCDIModel()

Sans oublier d'ajouter l'annotation @Default sur notre classe CDIModel de façon a ce que par défaut le moteur d'injection n'utilise pas la factory. Il ne le fera que si on lui dit explicitement.

Enfin, on utilise les deux modes d'injection:

1
2
3
4
5
6
@Inject
private CDIModel model;

@Inject
@FromFactory
private CDIModel model2;

donnant

1
2
3
Model CDI: les données du model

Model 2 CDI: les données du model From Factory

Named

Pour faire plus simple, et ne pas forcement avoir a construire des annotations, CDI fourni une annotation dédiée à la discrimination des beans: @Named qui permet de donner un nom a l’élément producteur du bean et de faciliter le binding sur l’élément où l'injecter. L’intérêt de cette annotation est qu elle permet de construire des beans spécifiques utilisables directement dans les JSP (même si l'on a pas encore parler de cette techno, cela va permettre d'utiliser des beans dans des éléments de pseudo code déclarés dans le code html, nous y reviendrons)

Ainsi par exemple, on va pourvoir ajouter deux @Named, l'un sur la classe:

1
2
3
4
@Named("model")
public class CDIModel {
...  
}

et l'autre sur la factory

1
2
3
4
5
6
7
@Produces @Named("model2")
public CDIModel createCDIModel()
{
 CDIModel m=new CDIModel();
 m.setDataModel(m.getDataModel()+" From Factory");
 return m;
}

les deux permettant de ne pas avoir a écrire le code suivant dans notre servlet ni même de spécifier qu'il faut les injecter:

1
2
3
4
5
6
7
8
if(model!=null)
 request.setAttribute("model", model);

if(model2!=null)
{
 model2.setDataModel(model2.getDataModel()+" From Factory");
 request.setAttribute("model2", model2);
})

Les scopes

Puisque nous parlons de JSP, profitons en pour nous intéresser au cycle de vie des beans. C'est quoi le lien? Bien entendu il s'agit de la durée de vie du bean selon le type de requête qu'un utilisateur est amener a faire sur les differentes pages de notre application (on parle d'application JEE quoi...). Entre autre on doit se demander si notre bean doit vivre juste le temps d'une requete (on utilisera alors l'annotation @RequestScoped), le temps de plusieurs requêtes (@SessionScoped) ou carrément le temps de toute la durée de vie de notre application (@ApplicationScoped).

Ainsi selon le scope choisi, un bean ne vivra pas le même temps... cela signifie aussi que celui ci sera recréé autant de fois que nécessaire, selon les demandes. Donc resumons:

  • Avec un scope application, le bean ne sera donc créer qu'une fois et ne sera a priori pas détruit (sauf lors de l’arrêt de l'applicatif). 
  • Le scope requete provoque a l'inverse la création du bean a chaque requête http et détruite a l'issu de la réponse. 
  • Le scope session est un intermédiaire où le bean est créé a la connexion de l'utilisateur et a l'aide d'information de session permet de maintenir le bean tant que cet utilisateur utilise l'application.

Pour tester ces scopes nous allons aller un peu plus loin dans la gestion du cycle de vie du bean. En effet, on a bien compris qu'un bean a une durée de vie plus ou moins longue mais on a pas parler de ce qui se passe lors de sa naissance ou de sa mort. Bien sur nous avons évoqué l'utilisation de l'annotation @Produces permettant de réaliser une pseudo initialisation du bean mais en fait l'utilisation de @Produces a surtout pour vocation d’initialiser un contexte de construction du bean et non le bean lui-même.

Ainsi donc, pour ce qui concerne la naissance et la mort d'un bean, il existe deux annotations spécifiques @PostConstruct et @PreDestroy permettant de preciser deux méthodes à exécuter à l'instar d'un constructeur et d'un destructeur.

Pouvoir exécuter un destructeur, on comprend vite que ça permet d’éventuellement désallouer des ressources. Par contre, on peut discuter de la pertinence d'un pseudo constructeur par rapport au vrai constructeur de la classe. En effet celui ci a pour objet justement d'initialiser l'objet! Alors pourquoi un @PostConstrut? Simplement pour permettre au bean d'exister complètement avant de réaliser une initialisation quelconque ceci permettant donc la prise en compte de la présence d’éventuelles autres injections de bean dans le bean que nous sommes en train de construire! Sans cela, point de salut!

Donc voila un petit exemple pour illustrer tout cela et voir comment fonctionne nos @ResquestScope et @ApplicationScope (on ne traitera pas @SessionScope, celui ci étant plus long a mettre en oeuvre et n'amenant qu'assez peu d'infos supplémentaires sur le fonctionnement de CDI)

Dans un premier temps, on va tout d'abord créer deux nouveaux bean pour lesquels nous définirons les méthodes @PostConstruct et @PreDestroy.

A ces deux classes on va ajouter a l'un @ApplicationScope et a la seconde @RequestScope comme suit:

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
@ApplicationScoped
public class CDIModel {

 private String dataModel="les données du model";
 
 @PostConstruct
 public void build()
 {
  System.out.println("Construction de CDIModel");
 }
 
 @PreDestroy
 public void destroy()
 {
  System.out.println("Destruction de CDIModel");
 }
...
}
et


 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
@Named
@RequestScoped
public class CDIModelShortScope {

 @PostConstruct
 public void build()
 {
  System.out.println("Construction de CDIModelShortScope");
 }
 
 @PreDestroy
 public void destroy()
 {
  System.out.println("Destruction de CDIModelShortScope");
 }
 
}

On réalise finalement les actions suivantes
  • On build et on construit notre EAR.
  • On charge celui ci dans notre container d'application preferé
  • On charge la page et on fait plusieurs raffraichissement.
  • On fini par decharger l'EAR
On jette un œil aux logs :

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
[2018-08-13T23:42:14.969+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=31 _ThreadName=Thread-8] [timeMillis: 1534196534969] [levelValue: 800] [[
  Construction de CDIModel]]

[2018-08-13T23:42:14.986+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=31 _ThreadName=Thread-8] [timeMillis: 1534196534986] [levelValue: 800] [[
  Construction de CDIModelShortScope]]

[2018-08-13T23:42:15.002+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=31 _ThreadName=Thread-8] [timeMillis: 1534196535002] [levelValue: 800] [[
  Destruction de CDIModelShortScope]]

[2018-08-13T23:43:31.005+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=32 _ThreadName=Thread-8] [timeMillis: 1534196611005] [levelValue: 800] [[
  org.tc.jee.essai.prod.web.cdi.bean.ServletConf@3dc05bc]]

[2018-08-13T23:43:31.013+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=32 _ThreadName=Thread-8] [timeMillis: 1534196611013] [levelValue: 800] [[
  Construction de CDIModelShortScope]]

[2018-08-13T23:43:31.014+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=32 _ThreadName=Thread-8] [timeMillis: 1534196611014] [levelValue: 800] [[
  Destruction de CDIModelShortScope]]

[2018-08-13T23:43:32.079+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=34 _ThreadName=Thread-8] [timeMillis: 1534196612079] [levelValue: 800] [[
  org.tc.jee.essai.prod.web.cdi.bean.ServletConf@3dc05bc]]

[2018-08-13T23:43:32.081+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=34 _ThreadName=Thread-8] [timeMillis: 1534196612081] [levelValue: 800] [[
  Construction de CDIModelShortScope]]

[2018-08-13T23:43:32.081+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=34 _ThreadName=Thread-8] [timeMillis: 1534196612081] [levelValue: 800] [[
  Destruction de CDIModelShortScope]]

[2018-08-13T23:43:33.420+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=30 _ThreadName=Thread-8] [timeMillis: 1534196613420] [levelValue: 800] [[
  org.tc.jee.essai.prod.web.cdi.bean.ServletConf@3dc05bc]]

[2018-08-13T23:43:33.422+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=30 _ThreadName=Thread-8] [timeMillis: 1534196613422] [levelValue: 800] [[
  Construction de CDIModelShortScope]]

[2018-08-13T23:43:33.423+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=30 _ThreadName=Thread-8] [timeMillis: 1534196613423] [levelValue: 800] [[
  Destruction de CDIModelShortScope]]

[2018-08-13T23:43:42.998+0200] [glassfish 5.0] [INFO] [] [] [tid: _ThreadID=48 _ThreadName=Thread-8] [timeMillis: 1534196622998] [levelValue: 800] [[
  Destruction de CDIModel]]
Effectivement la on se rend compte que le bean ayant le scope de applicatif n'est créer qu'au premier chargement de la page tandis que le scope associé a la requête et créer et détruit quasiment a la volé lors de chaque rafraîchissement.

Conclusion

Bien sur nous n'avons pas tout vu il reste les patterns avec CDI! mais cet article est deja assez long et vous propose de revenir d'ici quelques jours pour terminer ce sujet.

Références

[1] https://un-est-tout-et-tout-est-un.blogspot.com/2018/05/iod-linjection-de-dependances.html
[2] https://docs.oracle.com/javaee/6/tutorial/doc/giwhl.html
[3] http://openwebbeans.apache.org/
[4] http://weld.cdi-spec.org/
[5] https://javaee.github.io/glassfish/
[6] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/design-pattern-decorateur.html
[7] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/design-pattern-observateur.html
[8] https://un-est-tout-et-tout-est-un.blogspot.com/2018/04/invocationhandler.html
[9] https://un-est-tout-et-tout-est-un.blogspot.com/2017/11/design-pattern-factory.html
[10] http://www.cdi-spec.org/news/2017/05/15/CDI_2_is_released/
[11] https://readlearncode.com/java-ee/introduction-to-cdi-producer-methods/
[12] https://docs.oracle.com/javaee/6/tutorial/doc/gjfzi.html
[13] https://rmannibucau.developpez.com/tutoriels/cdi/introduction-cdi